
Modeling the Radial Elastic Interaction
between Reinforcing Bars and Concrete

Hailing Yu, Student M. ASCE and James V. Cox, M. ASCE
Johns Hopkins University, Baltimore, MD 21218
hailing@ceaxp2.ce.jhu.edu, James.Cox@jhu.edu

Abstract
The fabricated surface structures of steel and most fiber-reinforced polymer (FRP) bars
produce complicated mechanical interactions with concrete.  At one scale of modeling, the
bar-concrete interface is idealized as smooth, and the actual interaction is homogenized over
a characteristic length associated with the surface structure.  To account for the elastic
aspects of the mechanical interlocking, an interface with an elastic component may be
introduced.  The elastic modulus associated with the radial response is important in
predicting the splitting failure of concrete and is the key issue of this study.

For the case of steel bars, limited experimental data suggests that the radial compliance
varies with contact conditions.  An analytical study has demonstrated that an “effective
elastic modulus” of an interface varies with the distribution of the interface traction, but the
analytical model is only valid for relatively stiff reinforcement.  An overview of the
extension of this work to address relatively compliant reinforcements (e.g., FRP bars) is
presented.  For steel bars, a simple contact model combined with selected experimental data
provides an approximation for the contact conditions near the ribs; this approximation can
then be used to account for the effects of changing contact conditions upon the radial elastic
modulus in a phenomenological bond model.  Incorporating these effects into the bond
model significantly improves the predicted radial responses of selected bond specimens.

Introduction
Modeling the behavior of reinforced concrete requires models for both the constituent
materials and their interaction.  For steel and most fiber-reinforced polymer (FRP) bars
their fabricated surface structure (e.g., ribs or indentations), by design, results in a
complicated mechanical interaction with concrete.  Although several models have been
proposed to study the mechanical interaction and its effect upon structural behavior,
additional work is needed to quantify the radial component of the interaction which is
important in predicting splitting failures of concrete (both for steel and FRP bars).  In
recent years, additional experimental studies have been conducted (see e.g., Gambarova et
al. 1989, Malvar 1992, 1995, Noghabai 1995, Tepfers and Olsson 1992, and Ghandehari
et al. 1999) that examine some aspects of the radial response.  These studies provide
important data for obtaining a better understanding of the underlying mechanics.
Additional analytical and numerical studies are also needed to better understand and
characterize the observed experimental behaviors.

The mechanical interaction between reinforcing
bars and concrete, often referred to as bond, is
generally attributed to three mechanisms -
chemical adhesion, friction, and mechanical
interlocking.  For reinforcements with a
significant surface structure, mechanical
interlocking is the dominant mechanism affecting
the bond-slip behavior.  The effects of the mechanical interaction have been modeled
computationally at several scales (see e.g., Cox and Herrmann 1998), two of which are
depicted in Fig. 1.  Usually in rib-scale analyses either the geometry of the surface structure
or its local effects (e.g., a concentrated traction distribution near each rib) are explicitly
modeled.  In bar-scale analyses, the geometry of the interface is idealized as cylindrical,
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FIG. 1.  Two scales of bond analysis.



and the interface traction is homogenized over a characteristic length associated with the
surface structure.  As such, the effects of the mechanical interlocking must be accounted for
indirectly in bar-scale models.  One approach to modeling the mechanical interaction at this
scale is to adopt an interface idealization (see e.g., De Groot et al. 1981, and Cox and
Herrmann 1998).

While the analysis approach presented here is not tied to a particular bond model, validation
of the model by Cox and Herrmann (1999) motivated this study.  This bond model,
combined with specimen models, adequately reproduced the experimental results from
several different studies using a single calibration.  (Both steel and FRP bars have now
been considered.)  The model was formulated within the mathematical framework of
elastoplasticity, so the model components to be defined were the generalized stresses and
strains, elastic moduli, yield criterion, and flow rule.  The generalized stresses are the
homogenized tangent ( ) and normal ( ) traction components1 on the cylindrical interface,
and the generalized strains are the corresponding work conjugate relative displacements ( t
and n, respectively) nondimensionalized by the bar diameter (Db).  The generalized
stresses and strains are thus written as

Q T = ( ) and qT = t Db n Db( ) (1)
The strains q (and relative displacements) are additively decomposed into the elastic (qe)
and plastic (qp) components, and a linear relationship between the stresses and elastic
strains is assumed, i.e. Q = Deqe.  Experimental data indicates that it is sufficient to only
retain the diagonal elastic moduli giving

De =diag( D11
e , D22

e ) (2)

D11
e  can be calibrated from bond test data, but very little data exists to evaluate D22

e .  This
paper focuses on D22

e  for two reasons.  For a model that “fully couples” the tangent and
normal responses, the bond stress-slip behavior is affected by the radial response.
Furthermore, the radial elastic component of the interaction is very important in predicting
splitting failures of adjacent concrete.

For simplicity (and lack of experimental data) D22
e  for most bond models is defined to be

constant.  However, two unpublished tests of Malvar (1992) suggest that the radial elastic
response becomes more compliant with radial dilation (i.e., increasing δn).  To account for
this variation, elastoplastic coupling was recently introduced into the model of Cox and
Herrmann by expressing D22

e  as a function of the radial plastic strain q2
p .  As a preliminary

model Cox (1996) proposed a linear relationship between the interface compliance and q2
p

of the form
D22

e E c( )−1
= k1 + k2 ⋅ q2

p (3)
where Ec is Young’s modulus of concrete and k1 and k2 are model parameters.  While the
prediction of radial responses was improved by this formulation, additional justification
was sought.  An analytical study by Cox and Yu (1999) showed that an “effective interface
compliance” increased as the radial traction became more concentrated.

The next section outlines how this analytical work can be extended to address FRP rebars
(which are relatively compliant in the radial direction).  To bridge the gap between the
analytical work and the proposed elastoplastic coupling, the third section presents a simple
“contact model” to relateq2

p to a “contact length.”

                                                
1 Axisymmetry is assumed in the modeling, so equivalently the traction components are referred to as the
longitudinal and radial components.



Analytical Models for the Equivalent Elastic Modulus of the Interface
The analyses for studying the elastic modulus
are based upon the assumptions of axisymmetry
and a periodic structure along the z-axis (i.e.,
longitudinal axis).  Let sr denote the length of
one cycle of the surface structure (e.g., rib
spacing).  To define the elastic modulus,
models of the radial elastic responses of the rib-
and bar-scale models are examined.  A
macroscopically homogeneous interface traction
is considered thus reducing the analysis to that
of a unit cell; see Fig. 2, where the concrete and
bar are depicted as a thick-walled cylinder and
cylinder, respectively.  Although the rib
geometry is not explicitly modeled in the rib-
scale unit cell, its effect is idealized as a
concentrated radial traction distribution tn over
the length Lt.  For the bar-scale models an
interface with elastic modulus D22

e  is adopted,
and the key steps in characterizing D22

e  include:
(1) defining the idealized rib- (problems a and
c) and bar-scale analytical models (problems b
and d) shown in Fig. 2, (2) determining  via
its static equivalence to the rib-scale traction
distribution tn,  i.e.,

= 1
sr

tndz
− Lt 2

Lt 2

∫ (4)

(3) solving elastic problems a–d to obtain expressions for the elastic strain energies stored
in the two systems, and (4) postulating that the two systems should store the same amounts
of elastic strain energy and then equating the two energy expressions to obtain an analytical
solution for D22

e .  For brevity details are omitted, but for problems (a) and (c) the
displacements can be expressed in terms of generalized Fourier series, and series
expressions can be obtained for the work done by the tractions (see e.g., Cox and Yu 1999
for additional details).  Since the systems are elastic, the work done by the each traction
equals  the strain energy stored in the body.  Thus “energy equivalence” of the rib- and bar-
scale systems requires

Wa
t n + Wc

tn = Wb + Wd (5)

where Wa
t n  denotes the work done by tn in problem (a), and so on.  Applying the elastic

solutions and the interface definitions by Eqs. (1-2), we can express Eq. (5) as

W0
con − ri nvrn

con(ri)
n =1

∞

∑ 
 
  

 
+ W0

bar − ri nvrn
bar(ri)

n =1

∞

∑ 
 
  

 
= W0

con + W0
bar + risr

2Db D22
e (6)

where Db=2ri; the superscripts “bar” and “con” denote the bar and concrete, respectively;
n and vrn(ri) are Fourier coefficients of tn and ur(ri), respectively; and W0 is the work done

by a uniformly distributed traction  acting over the length sr.  Solving Eq. (6) for D22
e

gives

D22
e = −sr

2Db n vrn
con (ri ) + v rn

bar (ri)[ ]
n=1

∞

∑ (7a)

For steel bars, whose contribution to the elastic modulus can be ignored, D22
e  is written as

FIG. 2.  Idealized analytical models.



D22
e = −Ec n 0( )2

nri, c( )
n=1

∞

∑    (7b)

where  is a dimensionless function of
nondimensional parameters.  Clearly D22

e

depends on tn (via n/ 0), but the
concentration of the traction must be related to the bar scale model.  The potential
importance  of D22

e  with respect to the radial compliance is illustrated in Fig. 3 for the
Malvar specimen where sr=12.8 mm and case a denotes a bar scale model that does not
account for a reduced contact length.

Contact Model
The simplified “contact model” presented in this section is only applicable to the interaction
between the ribs of steel bars and concrete.  The sole objective is to estimate the contact
area.  For steel bars that have not yielded, most of the deformation mechanism is associated
with the failure of concrete.  Here we limit our consideration to the accumulation of a
wedge of damaged concrete on the rib face (see e.g., Lutz and Gergely 1967 and Malvar
1992 for experimental evidence).  Fig. 4 depicts the kinematics of the contact model where
geometry gives the relations

pr = hr tan (8a)

2
p = hr − Lt tan (8b)

We assume that as concrete fails due to contact stresses a new concrete wedge surface
(corresponding to  and pr) forms that is in contact with the concrete.

The traction components w and w on the actual contact surface of the concrete (Fig. 5a)
can be approximated by the tractions tn and tt (Fig. 5b) by assuming hr<<Db.  The latter are
then homogenized over sr to give  and  in a manner similar to that depicted in Fig. 2.

TABLE 1. Properties of the Five
Unit Cell Models for Fig. 3.

Case Lt D22
e

a sr n/a
b 1.587 mm n/a

c sr
Eq. (7b) with
Lt=1.587 mm

d 6.37 mm n/a

e sr
Eq. (7b) with
Lt=6.37 mm 0
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FIG. 3.  Radial traction versus
displacement for 5 unit cell models of a
concrete cylinder subjected to an
internal traction.

FIG. 4.  Kinematics of the contact model
relating contact length to plastic dilation.

FIG. 5. Two descriptions of the “actual
interface tractions.”



Uniform tractions are shown for simplicity.  The relationships between the two traction
descriptions are given by

w = cos cos − sin( )sr Lt (9a)

w = cos sin + cos( )sr L t (9b)

Last, we consider the material failure and slip conditions associated with the stresses.  For
this problem there are several obstacles to applying a multiaxial failure criterion  to concrete
(e.g., the complete stress state is unknown).  Though simplistic, we assumed that the local
crushing is governed by the uniaxial condition

− w ≤ fc (10a)
where fc is the uniaxial compressive strength of concrete.  In addition, Coulomb friction is
assumed to govern the slip along the actual contact interface, i.e.,

w ≤ − w( ) (10b)
where  is the coefficient of friction.

Elastoplastic Coupling
The analytical model for the elastic modulus and the
contact model will now be combined with
experimental data to obtain a form for the
elastoplastic coupling (Eq. 4).  Table 2 gives the
experimental data for 2

p , σ, and τ from three bond
tests when the maximum dilation first occurs (Malvar
1992).  We assume 2

e << 2
p  so that 2

p≈ 2.  At this
state, we also assume that both crushing and sliding occur on the interface; i.e., inequalities
(10) are equalities.  Given the data in Table 2, there are six equations (8-10) in six
unknowns ( , pr, Lt, w, w, ), where  has been treated initially as an unknown.
Solving the equations for each of the three tests gives values for  of 0.554, 0.549 and
0.550, respectively.  These values are surprisingly consistent for such a simple model and
fall within the range of some reported experimental measurements: [0.45,0.70] (Idun and
Darwin 1995).  The results also give values of Lt for each 2

p  which can be used with Eq.
(7b) to relate D22

e  and q2
p .  Fig. 6 shows the

resulting affine models (Eq. 3) fit to the
experimental data for two traction distributions.
The slope of the line (k2) is not strongly
dependent on the distribution type, but the
negative intercept for the uniform distribution is
not physically meaningful.  The model based
upon a cosine distribution is adopted for this
study;  the calibration parameters are k1=0.034
and k2=27.  Incorporating these results into the
bond model of Cox and Herrmann (1998) has
significantly improved the predicted radial
responses of different specimens (see e.g., Fig.
7).

Conclusions
(1) An analytical expression for D22

e  which characterizes the radial elastic response of an
interface is obtained by applying “static and energy equivalence measures” to the rib- and
bar-scale analytical models.  Including this elastic modulus in an interface model may

TABLE 2. Experimental Data

2
p(mm) (MPa) (MPa)

Test 6 0.512 -3.45 5
Test 8 0.135 -17.2 14
Test 10 0.029 -31 22
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FIG. 6. Elastic compliance as a function
of the generalized plastic dilation.



account for some aspects of the local interaction that are
not explicitly characterized in larger-scale modeling.

(2) A simple “contact model” was presented to relate the
contact length to the plastic dilation in the model of Cox
and Herrmann.  For three bond tests, the model is
consistent with the experimental data, but additional
experimental data is needed.

 (3) Combining the analytical model for D22
e  with the

“contact model” provides an analytical basis for the
proposed elastoplastic coupling and the associated model
parameters.  Improvements in the predicted radial
responses of bond specimens are obtained by
incorporating elastoplastic coupling into the model.
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FIG. 7. Radial response
predictions for Malvar test.


